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Abstract
Robinson and Levin (1997) proposed what they called a two-step procedure for

analyzing statistical data, whereby researchers first objectively evaluate the probability
of an observed effect (i.e., statistical significance) and, if and only if it can be concluded
that the underlying finding is too improbable to be due to chance, then they assess its
magnitude or effect size (i.e., practical significance). This technique is extremely useful
when conducting null hypothesis significance tests that have sufficient statistical power.
However, if statistical power is lacking, then the first step, which serves as the
"gatekeeper" for computing effect sizes, may lead to the non-reporting of a non-trivial
effect. When multiple tests of statistical significance are conducted, adjustments for
inflated Type I error rates should be made to ensure that the actual error rate does not
exceed its nominal value. Unfortunately, when multiple tests are undertaken with an
adjusted alpha, the statistical power of any particular test is lowered. Thus, the present
paper expands on Robinson and Levin's model by proposing a three-step procedure
when five or more hypotheses tests are of interest within the same experiment. Here,
the third step involves the use of a binomial test of result direction (including confidence
intervals and effect sizes) to determine whether the number of results falling in a certain
direction represents chance, by assuming that the probability of any particular result
direction is .5, under the null hypothesis.
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A New Proposed Binomial Test of Result Direction
Null hypothesis significance testing (NHST) has been utilized for more than 75

years, stemming from the seminal works of Fisher (1925/1941) and Neyman and
Pearson (1928). Despite its widespread use during most of the last century through
today, its practice has been extremely controversial. Over the years, several camps
have emerged regarding attitudes towards NHST. Opinions stemming from these
camps appear to lie on a continuum ranging from those who believe that statistical
significance testing should be banned completely (e.g., Bakan, 1966; Cahan, 2000;
Carver, 1978, 1993; Cohen, 1994, 1997; Guttman, 1985; Loftus, 1996; Meehl, 1967,
1978; Nix & Barnette, 1998; Rozeboom, 1960; Schmidt, 1992; 1996; Schmidt & Hunter,
1997) to those who contend that statistical significance tests are valid and useful
(Abelson, 1997a, 1997b; Frick, 1996; Levin, 1993, 1998; McLean & Ernest, 1998;
Mulaik, Raju, & Harshman, 1997; Onwuegbuzie & Daniel, in press-a, in press-b).

Although the debates regarding statistical significance testing have been heated
and prolonged, going as far back as Boring (1919) and Berkson (1938, 1942), most
researchers agree that practical significance should play a role in the interpretation of
empirical data. That is, many analysts agree that effect sizes measures should be
provided. However, differences lie with respect to the exact role of effect sizes in
research reports. Whereas some researchers (e.g., Thompson, 1996) advocate that
effect sizes always be reported regardless of whether statistical significance is found,
some (e.g., Carver, 1993) contend that effect sizes should replace statistical
significance testing completely. Still others (e.g., Fan, 2001) assert that statistical
significance testing (i.e., p-values) and effect sizes should complement one another. To
date, the latter seems to be the most popular.

Of those who believe that p-values and effect sizes should be combined in a
meaningful manner, the technique advocated by Robinson and Levinson (1997)
appears to be the most structured. Specifically, these researchers proposed what they
termed a "two-step process" (p. 22) for testing hypotheses. According to this model, a
statistical significant observed finding is followed by one or more indices of practical
significance; however, no effect sizes are reported in light of a non statistical significant
finding. In other words, researchers should determine first whether the observed effect
was statistically significant (i.e., a relationship or a difference that exceeds chance)
(Step 1), and, if and only if statistical significance is found, then they should report how
large or important the observed finding is (Step 2). As such, the statistical significance
test in Step 1 serves as a gatekeeper for the reporting of effect sizes (i.e., practical
significance) in Step 2.

The rationale for Robinson and Levin's (1997) two-step model stems from their
desire to prevent the over-interpretation of large effect sizes "in the absence of formal
assessments of their likelihood" (p. 23). Robinson and Levinson noted the following:

The main point here, however, is that although effect sizes speak loads about
the magnitude of a difference or relationship, they are, in and of themselves,
silent with respect to the probability that the estimated difference or relationship
is due to chance (sampling error). Permitting authors to promote and publish
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seemingly 'interesting' or 'unusual' outcomes when it can be documented that
such outcomes are not really that unusual would open the publication floodgates
to chance occurrences and other strange phenomena. So, what is our bottom-
line conclusion? Researchers cannot live by effect sizes alone! Just as they
should not get by exclusively with ps, neither should they get by exclusively with
Cohen ds and Pearson rs. And the bottom-line, two-step editorial policy
recommendation? First convince us that a finding is not due to chance, and only
then, assess how impressive it is. (p. 25) [italics in original]
A valid criticism of Robinson and Levin's (1997) two-step model was posited by

Cahan (2000). Cahan argued that the inferential statistical test and the corresponding
effect are technically unrelated procedures. According to Cahan, the two-step approach
is valid only if the statistical significance or non-significance of observed effects
provides information about the amount of error (es) included. Cahan notes that (a)
statistically non-significant effects do not necessarily consist entirely or mostly of noise,
and can be error-free; and (b) statistically significant effects are not necessarily error-
free, nor do they necessarily contain a trivial amount of random error. Thus they are not
necessarily "real," and can be due mostly to error. As such, Cahan concludes that the
logic of the two-step approach, which assumes a strong negative relationship between
the statistical significance of observed effects and the amount of random error
contained, is flawed.

Levin and Robinson (2000) countered Cahan's (2000) criticism of their two-step
model by arguing that null hypothesis significance testing and effect-size estimation are
both "conceptually and functionally related" (p. 35). Levin and Robinson posit that if
researchers secure consistency between hypothesis-testing and effect-size estimation
at the analytical and interpretational stages of quantitative studies, they would be
fostering what they call "conclusion coherence" (p. 35). According to Levin and
Robinson (1999), many examples exist wherein researchers who analyze data with
small sample sizes in the absence of p-values over-interpret their effect sizes. Indeed,
Levin (1998) stated:

In its extreme form, [such action] degenerates to strong conclusions about
differential treatment efficacy that are based on comparing a single score of one
participant in one treatment condition with that of another participant in a
different condition. (p. 45)

Thus, the purpose of the present essay is fourfold. First, an argument will be made for
using null hypothesis tests of significance as a gatekeeper for determining whether
effect-size measures should be reported. In particular, the major flaws of relying only on
effect-size estimates to assess observed findings will be identified. Other indices will be
advocated, including the use of confidence intervals and internal and external
replications. Second, it will be shown how Robinson and Levin's (1997) Two-Step
approach is inadequate when multiple tests of statistical significance are conducted.
Third, a Three-Step Model will be proposed to replace the two-step procedure in cases
where multiple tests of statistical significance are of interest. This three-step method
involves a Binomial Test of Result Direction at its third stage. A heuristic example will
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be provided to illustrate the utility of the three-step approach in such cases. Finally,
further applications of the three-step model will be delineated.

Most of the discussion in the first two sections below is not new to the literature
or even to my own writing (e.g., Daniel & Onwuegbuzie, 2000; Onwuegbuzie, 2001a,
2001b, in press-a, in press-b, in press-c; Onwuegbuzie & Daniel, in press-a, in press-b;
Weems & Onwuegbuzie, in press). However, the fact that the majority of statistics
textbooks, including many of the leading ones, still do not present an adequate
discussion of the advantages and disadvantages of null hypothesis significance testing,
instead typically taking the approach of training students and beginning researchers to
be mechanical users of statistical techniques rather than thoughfful, critical users (Darr,
1987), justifies expanded attention to this topic.
What if Only Effect Sizes Were Allowed to be Used to Interpret Statistical Data?

As noted above, several prominent researchers have called for null hypothesis
significance testing [NHST} to be banned completely. Indeed, some of the staunchest
critics of NHST contend that this practice has been extremely harmful to science. For
example, Meehl (1978, p. 817) stated that NHST "is a terrible mistake, a basically
unsound, poor scientific strategy, and one of the worst things that ever happened in the
history of psychology." Similarly, Tryon (1998) complained,

[T]he fact that statistical experts and investigators publishing in the best
journals cannot consistently interpret the results of these analyses is extremely
disturbing. Seven-two years of education have resulted in minuscule, if any,
progress toward correcting this situation. It is difficult to estimate the handicap
that widespread, incorrect, and intractable use of a primary data analytic method
has on a scientific discipline, but the deleterious effects are doubtless
substantial... (p. 796).

Schmidt and Hunter (1997, p. 37) asserted that "Statistical significance testing retards
the growth of scientific knowledge; it never makes a positive contribution." Another stern
rebuke has been provided by Thompson (1992): "This [statistical significance testing]
has created considerable damage as regards the cumulation of knowledge" (p. 436).
Also, Rozeboom (1997) contended that

Null-hypothesis significance testing is surely the most boneheaded procedure
ever institutionalized in the rote training of science students...[I]t is a sociology-
of-science wonderment that this statistical practice has remained so
unresponsive to criticism...(p. 335)
Unfortunately, not only are such statements unnecessarily inflammatory, but they

are also flawed. These passionate critics of NHST claim that use of this technique
represents a lack of scientific rigor. Thus, it is ironic that many of the claims of the
staunchest NHST opponents, such as those cited above, lack scientific evidence.
Unless empirical evidence (e.g., effect sizes) can be provided for such causal
assertions, they should not be made, or at least should be presented as a possibility,
rather than as a fact. Isn't that how we tell our students to conduct research and to
develop principled arguments? While I agree that statistical significance testing has
been misused and I concur with many of the criticisms of null hypothesis tests, it is an
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extreme leap to charge that NHST by itself has stunted "the cumulation of knowledge"
(Thompson, 1992, p. 436), is "one of the worst things that ever happened in the history
of psychology" (Meehl, 1978, p. 817) , or it "retards the growth of scientific knowledge...
[and]... never makes a positive contribution" (Schmidt & Hunter, 1997, p. 37).
Furthermore, some of the factual claims made in an attempt to invalidate NHST critics
either have been accompanied by superficial claims or represent flawed logic. As noted
by Krantz (1999),

It is one thing to accuse scientists of showing their ignorance of statistical
reasoning in the course of their science, but this does not imply that their ultimate
conclusions will be incorrect, nor even that their efficiency in reaching correct
conclusions will be impaired. A causal attribution of this sort needs to be
supported by careful empirical arguments.

Nevertheless, many valid criticisms of NHST have been made. Fan (2001) provides an
excellent summary of some of these criticisms:

Thompson (1993) discussed three relevant criticisms on statistical criticisms for
statistical significance testing: (a) overdependency on sample size, (b) some
nonsensical comparisons, and (c) some inescapable dilemmas created by
statistical significance testing (e.g., testing for assumption vs. testing for research
hypothesis). In a similar vein, Kirk (1996) discussed three major criticisms of
statistical significance testing: (a) significance testing does not tell researchers
what they want to know, but rather creates the illusion of probabilistic proof by
contradiction (Falk & Greenbaum, 1995), (b) Statistical significance testing is
often a trivial exercise because it simply indicates the power of the design (which
primarily depends on the sample size) to reject the false null hypothesis, (c)
Significance testing "turns a continuum of uncertainty into a dichotomous reject-
do-not-reject decision," and this dichotomous decision process may "lead to the
anomalous situation in which two researchers obtain identical treatment effects
but draw different conclusions" (Kirk, p. 748) because of the slight differences in
their design (e.g., sample sizes).
Because of these and other criticisms, many researchers have called for the

reporting of effect sizes either to complement or to replace NHST. In fact, very recently,
the latest version of the American Psychological Association (APA), version 5,
contained the following statement:

When reporting inferential statistics (e.g., t tests, F tests, and chi-square), include
information about the obtained magnitude or value of the test statistic, the
degrees of freedom, the probability of obtaining a value as extreme as or more
extreme than the one obtained, and the direction of the effect. Be sure to include
sufficient descriptive statistics (e.g., per-cell sample size, means, correlations,
standard deviations) so that the nature of the effect being reported can be
understood by the reader and for future meta-analyses. This information is
important, even if no significant effect is being reported. (p. 22)

A few pages later, APA (2001) states
Neither of the two types of probability value directly reflects the magnitude of an
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effect or the strength of a relationship. For the reader to fully understand the
importance of your findings, it is almost always necessary to include some index
of effect size or strength of relationship in your Results section. (p. 25)

On the next page, APA states that
The general principle to be followed, however, is to provide the reader not only
with information about statistical significance but also with enough information to
assess the magnitude of the observed effect or relationship. (p. 26)

These statements were the direct result of the American Psychological Association
(APA) Board of Scientific Affairs (1999), who convened a committee called the APA
Task Force on Statistical Inference (TFSI), recommending in no uncertain terms, that
researchers should "always present effect sizes for primary outcomes...[and]...reporting
and interpreting effect sizes...is essential to good research" (Wilkinson & the Task
Force on Statistical Inference, 1999, p. 599).

Thus, it is clear that over the last few decades statistical significance testing has
come under extremely close scrutiny. Indeed, since 1950, the number of articles
published in the fields of education, psychology, ecology, and medicine criticizing
statistical significance testing has been increasing at an exponential rate (Anderson,
Burnham, & Thompson, 1999). Additionally, journals (e.g., Journal of Experimental
Education and Research in the Schools) have devoted a special theme issue to NHST;
symposia also have occurred at national annual meetings such as the American
Educational Research Association, the American Psychological Association, and the
American Psychological Society. Even-an edited book, entitled What if there were no
significance tests? (Harlow, Mulaik, & Steiger, 1997), has been devoted to this topic.

Unfortunately, although effect sizes has logical appeal, it is clear that their use
have not been subjected to the same level of scrutiny as has NHST. In particular,
although the limitations of NHST have been presented by APA (2001), inasmuch as it
states that p-values do not directly reflect "the magnitude of an effect or the strength of
the relationship" (p. 25), no such presentation of the limitations of effect sizes prevails in
this pivotal book. As such, it appears that some researchers, if not many, are not aware
that many of the same criticisms launched against NHST also can be aimed at effect
sizes. In particular, one of the most repeated criticisms of statistical significance testing
probably is its overreliance on sample size (Cohen, 1994; Fan, 2001; Kirk, 1996;
Onwuegbuzie & Daniel, in press-a, in press-b; Schmidt & Hunter, 1997; Thompson,
1993). Yet, as noted recently by Fan (2001), "effect size can also be misleading
because sample size influences the sampling variability of an effect-size measure" (p.
275). Moreover, using Monte Carlo methods, Fan demonstrated that an observed
finding that appears to have practical significance (i.e., large effect size) actually could
be the result of sampling error, thereby making any resultant conclusions unreliable and
potentially misleading. Based on his findings, Fan recommended that information about
both statistical significance and effect sizes be reported for observed findings:

Statistical significance testing and effect size are two related sides that together
make a coin; they complement each other but do not substitute for one another.
Good research practice requires that, for making sound quantitative decisions in
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educational research, both sides should be considered. (p. 275)
Prior to Fan's (2001) work, Barnette and McLean (1999), again using Monte Carlo
procedures, found that standardized effect-size variation was systematic rather than
random. According to these authors, the number of groups and sample sizes were
highly predictive (i.e., R2 = .999) of standardized effect sizes. Similarly, Hogarty and
Kromrey (2001), once again using Monte Carlo methods, demonstrated that the most
frequently used effect-size estimates (e.g., Cohen's 1988 d and Hedges and Olkin's g)
are extremely sensitive to departures from normality and homogeneity. Even trimmed
effect-size measures (Hedges & Olkin, 1985; Yuen, 1974) exhibit extreme bias when
the sample is small, as do several non-parametric effect-size indices, such as Y1
(Kraemer & Andrews, 1982) and the Common Language (CL) effect-size statistic
(McGraw & Wong, 1992). Indeed, bearing in mind that different effect-size measures
are suitable for different types of data (Hogarty & Kromrey, 2001), it is disturbing that
some researchers do not even indicate the index to which they are referring when
reporting effect sizes (Kirk, 1996), nor do they appear to indicate whether the effect-size
measure interpreted represents an adjusted or unadjusted index. The lack of
information provided here is extremely disturbing because meta-analyses are based on
aggregating and comparing effect sizes across studies. How can effect sizes be
aggregated if it is not clear whether they are measured on the same metric?
Unfortunately, the method of some meta-analysts of omitting unlabeled effect sizes
from the aggregate index introduces bias.

It should be no surprise that effect sizes are affected in much the same way as
are p-values by sample size. Indeed, effect-size statistics represent random variables.
Consequently, effect-size measures are affected by sampling variability, as dictated by
its underlying sampling distribution. In turn, the amount of sampling variability of an
effect-size estimate is influenced by the underlying sample size, in much the same way
as p-values are affected by the number of cases utilized in the study. That is, when the
sample size is small, the discrepancy between the sample effect size and population
effect size is larger (i.e., large bias) than when the sample size is large. To use an
extreme example, should one be excited about obtaining a large correlation coefficient
that was based on three cases? Also, effect sizes are affected by non random
sampling. Unfortunately, approximately 95% of studies do not involve random sampling.
Thus, measures advanced to compensate for the problems stemming from the role of
sample size in NHST (e.g., use of confidence intervals) also should apply to effect
sizes.

Additionally, support of the findings of Fan (2001), Barnette and McLean (1999),
and Hogarty and Kromrey (2001) stems from the fact that many of the effect-size
formulae rely heavily on the assumptions of normality and homogeneity of variance
being met. For example, Cohen's (1988, p. 20) d effect-size measure is given by the
following:
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M1 -M2d (1)
a

where cis the pooled within-population standard deviation (i.e., al= a2= a). The
numerator component of the expression involves means, which are extremely sensitive
to extreme observations, especially when sample sizes are small (Huck, 2000). In the
small-sample case, an extreme observation in one of the groups (e.g., experimental
group) could seriously distort the mean differences, thereby unduly influencing the
effect-size estimate. To the extent that the outlying observations affect the t-statistic
involved in the t-test of independent samples (i.e., statistical significance), it also
influences the effect size (i.e., practical significance).

Further, because the denominator in Equation 1 utilizes the pooled standard
deviation, any heterogeneity of variance would affect the effect size in a similar way to
the t-statistic. Moreover, the problems caused by departures from normality and
heterogeneity of variance when null hypothesis significance testing is involved are very
much an issue for effect-size measures associated with more complex family members
of the general linear model. For example, the standard effect-size indices (e.g., e2 and
co2) that are utilized often for OVA-type (e.g., ANOVA, MANOVA) analyses assume
equal variances, which is not always met (Onwuegbuzie & Daniel, in press-b).
However, these weaknesses do not imply that effect sizes should be banned or
replaced by some other class of indices--which echoes what some researchers (e.g.,
Carver, 1993) recommend should be the fate of null hypothesis significance testing.
Indeed, in cases where such violations come to the fore, non-parametric effect sizes
(e.g., Y1 and CL) may be more appropriate, in much the same way that non-parametric
inferential statistics often are more appropriate when normality and/or heterogeneity of
variance appears to underlie the data. Rather, the above limitations pertaining to effect
sizes identified above suggest that (a) all assumptions underlying the selected effect-
size method should be subjected to the same stringent scrutiny as should statistical
significance tests, (b) combining null hypothesis significance testing and effect-size
indices, after checking all pertinent assumptions, provides an additional safety net from
false or misleading conclusions, compared to using either technique alone, and (c)
researchers should pay much more attention to maximizing the quality of their research
designs (e.g., select an appropriate sample size) in order to minimize threats to the
model assumptions that pertain to both the null hypothesis significance test and the
accompanying effect-size measure of interest.

In addition, it does not appear to be obvious to some researchers that effect
sizes are a function of the scale of measurement used. Evidence of this is provided by
McLean, O'Neal, and Barnette (2000), who, in their award-winning paper, demonstrated
that gain effect sizes were different for the raw, scaled scores, and Normal Curve
Equivalent (NCE) scores for Grades 4, 6, and 8 on a national norm-referenced test for
749, 574, and 464 schools, respectively, representing 120,149 students. Specifically, as
McLean et al. expected, the effect sizes for NCE scores were lower than those for raw
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and scaled scores. The researchers appropriately concluded that when effect sizes are
computed, researchers should take into account the scale of measurement upon which
they are being applied.

As noted above, a way in which NHST is abused occurs when a dichotomous
decision (i.e., reject vs. do not reject) is used as the sole determinant of the significance
(i.e., importance) of an observed finding by comparing the p-value to .05. Yet, many
researchers who interpret effect sizes appear to use religiously criteria such as those
provided by Cohen (1988), who popularized the use of effect-size reporting, even
though recommendations vary with respect to how effect sizes should be interpreted
(McLean et al., 2000), and despite Cohen's (1988) admonishment that effect-size
values are dependent on the specific content and methods that prevail in a given
research context. For example, in interpreting effect sizes associated with differences
between two groups (i.e., Cohen's d), Cohen (1988) recommended cutpoints of .20 for
small effects, .50 for medium effects, and .80 for large effects. In stark contrast,
McLean (1995) suggested the following criteria: .50 for small effects, between .50 and
1.00 for moderate effects, and above 1.00 for large effects. Regardless of which criteria
are used, it is clear that adherence to such cutpoints has the effect of trichotomizing
interpretations in much the same way as p-values dichotomize decision-making. As
noted by Shaver (1993), "There already is a tendency to use criteria, such as J.
Cohen's (1988) standards for small, medium, and large effect sizes, as mindlessly as
has been the practice with the .05 criterion in statistical significance testing" (p. 311).

A valid criticism of NHST that is supported by data pertains to the low statistical
power that prevails in many studies. Indeed, the average power of null hypothesis
significance tests typically lies between .40 and .60 in empirical studies (Cohen, 1962,
1965, 1988, 1994, 1997; Schmidt, 1996; Sedlmeier & Gigerenzer, 1989). With an
estimated point estimate for power across studies of .50. (Cohen, 1962, 1997), as
noted by Schmidt and Hunter (1997, p. 40), "This level of accuracy is so low that it
could be achieved just by flipping a (unbiased) coin!" Yet, the fact that power is
unacceptably low in most studies suggests that misuse of NHST is to blame, not the
logic of NHST. Indeed, it can be argued that low statistical power represents more of a
research design issue than it is a statistical issue, since it can be rectified by using a
larger sample. Unfortunately, as illustrated above, effect sizes also can fall victim to
poor research designs in general and small sample sizes in particular. In fact, an
obsession with effect sizes without considering the sample size can have the effect of
promoting weak research designs. As such, in making decisions about which articles
should be published, journal editors should focus less on pvalues and effect sizes and
more on the quality of the underlying research design.

Reliability is a concept that receives disproportionately scant attention in the
interpretation of an observed finding (Onwuegbuzie & Daniel, 2000, 2001, in press-a, in
press-b; Onwuegbuzie, Daniel, & Roberts, 2001; Roberts & Onwuegbuzie, 2000;
Roberts, Onwuegbuzie, & Eby, 2001). Reliability, or rather unreliability, can adversely
affect the internal validity of findings (i.e., instrumentation; Campbell, 1957; Campbell &
Stanley, 1963; Onwuegbuzie, in press-b) through an inflation of Type I error or a

11.
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reduction in statistical power. With respect to the latter, Onwuegbuzie and Daniel (2000)
demonstrated that subgroups with scores that generate markedly different reliability
estimates can seriously reduce statistical power, even when the full-sample reliability
coefficients is adequate. However, low reliability indices do not only adversely affect null
hypothesis significance testing, but also negatively impact effect-size measures. After
all, poor reliability coefficients stem from scores that do not behave in a consistent
manner (Onwuegbuzie & Daniel, 2000, 2001), and it is these scores that are used to
calculate both test statistics in null hypothesis significance testing and effect-size
measures. Thus, effect-size measures are subject to the same limitations stemming
from inadequate reliability as are p-values. Indeed, effect sizes always should be
interpreted with respect to the observed score reliability, as should be the case for
statistical significance testing.

Many critics of NHST have advocated that these be replaced by confidence
intervals (e.g., Carver, 1993; Schmidt, 1996). A (two-sided) confidence interval,
characterized by lower and upper bounds, identifies a probable range of magnitudes for
the effect size (Abelson, 1997b). As such, confidence intervals can be viewed as
estimates of theoretical significance, as opposed to statistical significance (i.e., p-
values) and practical significance (effect sizes) (Onwuegbuzie, 2001b). Moreover, a
confidence interval includes in it all the information provided by the null hypothesis
significance test and more (Cohen, 1994; Serlin, 1993). Thus, it is baffling why some
researchers recommend that statistical significance testing be replaced by confidence
intervals because null hypothesis significance testing can be conducted within the
framework of confidence intervals. Once a (95%) confidence interval is constructed,
what is to stop an analyst from examining whether 0, or any other theoretical value, is
contained in the interval? As noted by Krantz (1999), this is clearly tantamount to
statistical significance testing. Thus, replacing NHST with confidence intervals will not
prevent researchers from conducting statistical significance tests. Moreover, critics of
NHST should not be recommending that confidence intervals replace statistical
significance tests but that they should replace the reporting of p-values. In any case,
the reporting of confidence intervals as indices of theoretical significance has logical
appeal because it has the potential to minimize the likelihood of misleading
interpretation of large but spurious effect sizes (Cahan, 2000).

In summary, this section has highlighted 10 limitations associated with the use of
effect-size indices. Specifically, use of effect sizes is adversely affected by (a) undue
sampling error stemming from small sample sizes and non random samples; (b)
departures from normality; (c) heterogeneity of variances; (d) unreliability of scores (i.e.,
measurement errors); (e) lack of information about the effect size measure used,
resulting in problems with aggregating different effect-size indices; (f) lack of
consideration of scale of measurement; (g) rigid interpretation of effect-size coefficients;
(h) multiple (contradictory) cutpoints for effect-size interpretation; (i) multiple
interpretations of effect size indices; and (j) problems associated with point estimate
nature. Unfortunately, many researchers who criticize null hypothesis significance
testing in general and those who advocate replacing p-values with effect size measures

12
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in particular often fail to mention any of these limitations associated with the reporting of
effect sizes. Thus, analysts who criticize null hypothesis significance testing without
also discussing the limitations of effect sizes are not providing a balanced analysis but
are focusing solely on the bad practices linked to the former method. These threats to
the validity of effect-size reporting make it clear that effect sizes are not a panacea for
empirical research. Moreover, the flaws outlined above provide credence to the
assertion that null hypothesis significance tests and effect sizes should be used in
combination. A logical way of combining these two procedures is via Robinson and
Levin's (1997) Two-Step method for analyzing empirical data. It is to this we now turn.

Robinson and Levin's (1997) Two-Step Method
As noted by Onwuegbuzie (in press-b), the overall goal of empirical research is

to collect and to analyze data that help the researcher to address research questions
and/or to test hypotheses, leading to meaningful conclusions in which as many rival
explanations as possible are eliminated. This is the goal that drives both null hypothesis
significance testing and effect size reporting. Unfortunately, as was illustrated in the
previous section, use of both null hypothesis significance testing and effect sizes
contains inherent flaws. Thus, no one index, by itself, is a hegemony in analyzing and
interpreting data. Rather, using both methods in combination helps to rule out more
rival explanations than would occur if either method was used alone to interpret
observed findings.

Among those who agree that p-values and effect sizes complement one another,
_debate exists as to how these indices should be combined. Moreover, controversy
prevails about which index should dominate interpretation. Table 1 illustrates the four
possible outcomes and their conclusion validity when combining p-values and effect
sizes. This table echoes the decision table that demonstrates the relationship between
Type I error and Type II error. It can be seen from Table 1 that conclusion validity
occurs when (a) both statistical significance (e.g., p < .05) and a large effect size
prevail; and (b) both statistical non-significance (e.g., p > .05) and a small effect size
occur. Conversely, conclusion invalidity exists if (a) statistical non-significance (e.g., p >
.05) is combined a large effect size (i.e., Type A error) and (b) statistical significance
(e.g., p < .05) is combined a small effect size (i.e., Type B error). Both a Type A error
and a Type B error suggest that any declaration that the observed finding is meaningful
on the part of the researcher would be misleading and hence result in conclusion
invalidity. In this respect, conclusion validity is similar to what Levin and Robinson
(2000) term conclusion coherence. Levin and Robinson define conclusion coherence as
"consistency between the hypothesis-testing and estimation phases of the decision-
oriented empirical study" (p. 35).

Insert Table 1 about here

Some researchers (e.g. Thompson, 1996) contend that effect sizes always
should be reported, that is, regardless of whether statistical significance is observed. In
effect, these individuals believe that effect sizes should take precedence over p-values
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with respect to interpreting statistical data. However, as can be seen in Table 1, this
policy may lead to a Type A or Type B error being committed. Similarly, Type A and
Type B errors also prevail when null hypothesis significance testing is used by itself. In
fact, conclusion validity is maximized only if Robinson and Levin's (1997, p. 22) "two-
step" procedure is utilized.

According to this model, null hypothesis significance testing takes precedence
over effect-size calculation inasmuch as it represents the first step in the process of
analyzing and interpreting statistical data. More specifically, effect sizes are reported if
and only if statistical significance is found. Thus, the first step is for the researcher to
determine whether the observed finding is statistically real or it represents chance. If the
former, then one or more effect-size measure (i.e., practical significance) is reported
(i.e., Step 2), because sampling error can be ruled out as a serious rival explanation. If
no evidence is found to suggest that the result exceeded what would be expected by
chance, no effect sizes are reported. The Two-Step method is consistent with Barnette
and McLean (2000) and McLean et al. (2000), who recommended using a statistical
significance test before utilizing an effect-size index in order to prevent the
interpretation of random effect sizes.

The utility of the two-step process is that it results in a lower probability of Type A
and Type B occurring, relative to other combinations of combining information about p-
values and effect sizes because it prevents researchers from "interpreting descriptive
effect sizes as 'real' even though statistical tests of those effects have indicated either
that they should be regarded as 'chance' deviations from a null-hypothesis parameter,
given sufficient statistical power,...,or that the study's evidence is inconclusive"
(Robinson & Levin, 2000, p. 35) (i.e., Type A error) and from "crowing about
'impressive' effect sizes without their having applied any inferential statistical
procedures (hypothesis tests or confidence intervals) at all" (p. 350 (Type B error). As
such, the Two-Step method appears to have the greatest potential for obtaining
conclusion validity or coherence.
Limitations of the Two-Step Procedure

When multiple tests of statistical significance are conducted, as is often the case,
adjustments for inflated Type I error rates should be made (Huck, 2000; Onwuegbuzie
& Daniel, in press-a, in press-b). For example, when a researcher conducts a single
statistical significance test, the probability of rejecting a true null hypothesis is equal to
the critical p (a)-value for that test. However, when k tests of statistical significance are
conducted, assuming independence of each test, with testwise error probabilities of al,

ak for the k tests, the overall alpha (or "familywise" alpha) level actually exceeds
the value of any of the individual testwise alphas:

overall a = 1 - (1 a1)(1 a2). . .(1 - ak)
In the case when all k statistical significance tests employ the same testwise alpha level
(aT), the equation could be simplified:

overall a = 1 - (1 - a7-)k
Using this latter formula, in the case of performing 10 tests of statistical significance at
the .05 level of probability, the overall Type I error probability would actually be not 5%,
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but 40.1%.
In handling this problem, all the tests of statistical significance can be undertaken

either by using the same "adjusted" alpha level via techniques such as the Bonferroni
adjustment, or by making some tests more liberal than others in the set of correlations
analyzed, via methods such as the Ho Ims procedure (Huck, 2000). Whatever technique
is used, it is important to attempt to ensure that the actual Type I actual error does not
exceed its nominal value. Alternatively, multivariate statistical procedures can be
utilized to minimize the number of statistical significance tests employed, thereby
countering the Type I error inflation problem, in addition to representing a more realistic
picture of the multivariate reality in which the variables actually occur (Onwuegbuzie &
Daniel, in press-b).

Although the analysis of multivariate data often honors, in the optimal sense, the
nature of reality that most researchers are interested in studying (Tatsuoka, 1973;
Thompson, 1999), there are times when focusing on univariate effects is more
appropriate. For example, if a child is being diagnosed for learning difficulties, then
isolating her/his individual weakness is extremely appropriate. In such cases,
researchers should bypass mutlivariate analyses and proceed directly to conducting
multiple univariate analyses (Keselman et al., 1998).

Unfortunately, when multiple tests are conducted and an adjusted alpha value
utilized, the statistical power of any particular test is lowered in proportion to the number
of tests performed. For example, if a researcher wanted to compare 64 males and 64
females on one variable, with an overall rate of .05, the alpha value is .05; if two gender
comparisons were made, using the Bonferroni adjustment, the adjusted alpha is .025
(i.e., .05/2); if five gender comparisons are made, then the adjusted alpha value is .01
(.05/5). Thus, the statistical power for detecting a moderate effect will be lower for five
comparisons (.59) than for two comparisons (.71) and one comparison (.80). In any
case, the statistical power for making more than one comparison is inadequate.
Disturbingly, the typical level of power used to detect moderate relationships in the
social and behavioral sciences is .5 (Cohen, 1962, 1997). Indeed, many studies are
unable to discover true relationships that prevail in the population.

In situations when statistical power is low because of an interest in conducting
multiple univariate null hypothesis significance tests, Robinson and Levin's (1997) Two-
Step Procedure is problematic. This is because when power is low, the first step of the
two-step procedure will lead to an inflation of Type II error. Unfortunately, Type II error
and Type A error (cf. Table 1) are positively related. That is, as Type I error increases
(i.e., statistical power decreases), Type A error also increases. Thus, the Two-Step
method represents an extremely viable technique as long as the statistical significance
tests of interests have sufficient statistical power. When power is lower, as is often the
case when multiple univariate null hypothesis significance tests are conducted, it is
difficult to assess the extent to which the Two-Step method yields conclusion validity
because of the increased likelihood of Type A error. As such, when multiple univariate
null hypothesis significance tests are of interest, a Three-Step method of analyzing data
is proposed.

15
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Three-Step Method for Testing Multiple Univariate Null Hypotheses
As noted above, when conducting multiple univariate tests of significance, it is

common to find situations in which after adjusting for Type I error, none of the observed
effects were statistically significant, even though at least one of the findings would have
been declared statistically significant if the number of hypotheses of interests had been
less. In such cases, using the Two-Step method, the researcher would declare that
none of the observed findings were statistically significant and thus no effect sizes
would be reported. However, such a conclusion can be extremely misleading when low
statistical power is a serious rival explanation. For example, let us suppose that a
researcher was interested in examining gender differences in levels of statistics anxiety
among graduate students. Let us further suppose that this researcher administered the
Statistical Anxiety Rating Scale (STARS; Cruise & Wilkins, 1980), which contains six
subscales, to a random sample of 100 students (50 females and 50 males). Also, let us
assume that she wanted to compare the male and female sample members with
respect to these six dimensions individually. (Let us assume that the scores pertaining
to all five subscales yielded adequate reliability coefficients.) Unfortunately, after
applying the Bonferroni adjustment (i.e., adjusted a = .008), the investigator observed
that no gender difference emerged for any of the six subscale scores. Using the Two-
Step method, the researcher would conclude that no gender differences existed for any
of the dimensions of statistics anxiety and she would not report any effect sizes.
However, let us suppose that on further investigation, she noted that, although not
representing a statistically significant difference, for all six dimensions, females reported
higher scores than did males. Is this noteworthy or just a coincidence? Well, for each of
the six tests of hypothesis, the null hypothesis is that no gender difference in scores
exists. Even if this was perfectly true in the population, because of sampling error, we
would expect a difference between the female and male students, however small.
Again, assuming no gender difference in the population, we would expect males to
report higher scores 50% of the time (on average) and females to report higher scores
the other 50% of the time (on average). That is, the expected probability that females
(or females) would obtain higher scores under the null hypothesis is .5. Thus, across
the six subscales, we would expect males to exhibit higher scores (at random) for three
of the subscales, and females to exhibit higher scores (at random) for the other three
subscales. However, the researcher found that females reported higher scores for all
six subscales. Interestingly, the Binomial distribution can be used to determine the
probability of obtaining six outcomes in the same direction (i.e., female students higher
on all six occasions), with a per-experiment probability (i.e., for each subscale) of .5.
The binomial probability distribution gives the probability associated with each possible
x value. Specifically, given a binomial experiment consisting of n trials, where the
probability of success on an individual trial is p and the probability of failure is q (where
q = 1 - p). Then the probability of exactly n successes in n trials is given by the formula
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x = 0, n

number of outcomes with x successes.

P(x) = C(n, x) pX qn-x
This formula could be used to determine the probability of obtaining six successes
(females reporting higher scores) out of six trials, by setting p and q equal to 0.5, and n
= 6, and then letting x = 6 (i.e., the number of successes). This yields a probability of
.016. Thus, the probability of obtaining the number of successes as extreme as 6 out of
6 is 0.016. Simply put, the probability of obtaining an outcome as extreme as the one
observed (i.e., 100% successes) on either side of the binomial distribution based on six
null hypothesis tests of significance is only 0.016. Using a 5% level of significance, the
researcher would reject the null hypothesis that female students do not consistently
report higher levels of statistics anxiety than do the males. (A 95% confidence interval
for the proportion of successes also could have been reported.)

For future reference, the test described above will be termed the Binomial Test of
Result Direction. Because a statistically significant finding emerged, the researcher
would complete the analysis by computing an effect-size measure. An effect-size index
that is compatible with the Binomial test is the difference in success proportions, which
is given by the proportion of successes (i.e., 6/6) minus the proportion of successes
under the null hypothesis (i.e., 0.50). For the present data, this index is 1.00 - 0.50 =
0.50, which is the maximum value for this index. An alternative effect-size index for the
Binomial test is the proportion-observed-above chance index, which is given by the
difference in success proportions divided by the proportion of successes under the null
hypothesis (i.e., 0.50), expressed as a percentage. For the current example, the
proportion-observed-above chance index is 100(1.00 0.50)/0.50 = 100%, which, again
is the maximum value for this index. Thus, the researcher could state the following:

A series of independent t-tests, after applying the Bonferroni adjustment,
revealed no statistically significant difference between male and female graduate
students with respect to scores on all six subscales of the STARS. However, a
follow-up Binomial Test of Result Direction revealed that the consistency with
which females reported higher anxiety scores was statistically significant. The
effect size associated with this trend, as measured by the proportion-observed-
above chance index, was maximal.

Alternatively, in reporting the Binomial Test of result Direction, the researcher could
have stated that "the trend in anxiety scores were in a statistically real direction."

Figure 1 presents the proposed Three-Step Model for testing multiple univariate
null hypotheses. It can be seen from this figure that the first step involves testing for
statistical significance each of the univariate hypotheses, after adjusting for Type I

7
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error. (Confidence intervals also can be reported in Step 1.) In Step 2, as is the case for
Robinson and Levin's (1997) model, if the p-value is less than the adjusted alpha level
(i.e., statistical significance), then the appropriate effect-size index (i.e., practical
significance) is reported, alongside their confidence intervals (i.e., theoretical
significance). The Binomial Test of Result Direction begins the third step in the process.
Specifically, if the Binomial test yields a p-value greater than .05, then no effect-size
index would be reported, and the researcher would conclude that there was no
statistically significant trend; on the other hand, if the Binomial test yields a p-value less
than .05 (i.e., statistically significance), then the analyst would report and interpret the
proportion-observed-above chance index. (Confidence intervals, again, could
supplement the Binomial Test of Result Direction and any associated effect size.)

Insert Figure 1 about here

As can be seen, the Three-Step Model for testing multiple univariate null
hypotheses helps to reduce the probability of Type A error (see Table 1) relative to the
Robinson and Levin's (1997) Two-Step Model. A desirable feature of the Binomial Test
of Result Direction is the fact that this represents a non-parametric test of significance,
and thus has less stringent assumptions than is the case for parametric null hypothesis
tests of significance. An additional appeal of the Binomial test of significance is that it
provides exact p-values.

It should be noted that the Binomial Test of Result Direction is only appropriate
when five or more univariate null hypotheses are of interest. This is because, whereas
the probability of observing 5 successes in 5 trials (i.e., hypothesis test) under the null
hypothesis of equal proportions is .031, the probability of observing 4 successes in 4
trials is .062. Table 2 presents the number of successes needed to obtain a p-value
less than .05 (i.e., critical value) using the Binomial Test of Result Direction. In this
table, the number of hypotheses tested (Range = 5-25) is presented in the first column,
whereas the critical value is specified in the second column. The final column
represents the probability of obtaining a number of successes as extreme or more
extreme than the critical value. Thus, for example, if 8 univariate null hypothesis
significance tests were conducted, then either 7 or 8 findings in the same direction
would yield a statistically significant trend because the probability of obtaining 7 or more
successes in 8 trials is .035.

Insert Table 2 about here

Heuristic Example
Recently, Elbedour, Onwuegbuzie, and Stills (2001) were interested in

determining whether it makes a difference to children from the Bedouin-Arab
community in Israel if children live in monogamous or polygamous families with respect
to a myriad of school performance and psychological factors. These researchers
administered a Hebrew version of the Teacher Report Form (TRF) of the Child Behavior

8
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Checklist (CBCL; Achenbach, 1991). This Hebrew version was developed by Auerbach,
Goldstein, and Elbedour (2000), using the translation-back translation method. The
CBCL is the most commonly used measure of social competence and behavioral
problems. The CBC contains 8 subscales (e.g., anxiety, delinquency, aggression) that
can be collapsed into an internalizing or externalizing scale. Participants, who consisted
of 153 children from one-wife families and 102 children from two-wife families, also
were administered 10 measures of academic achievement and 11 measures of teacher
ratings.

When Elbedour et al. compared (in a univariate manner) the two sets of children
with respect to the 10 achievement measures, after applying the Bonferroni adjustment,
they found that all of the p-values exceeded the Bonferroni-adjusted alpha value of
.006. Thus, if the investigator had used the two-step method, they would have
concluded that there was no difference between the two groups with respect to school
performance, even though 8 of the 10 p-values were less than .05. Not being able to
reject any of the 10 null hypotheses prevented them from reporting effect sizes under
the Two-Step rule. Yet, what was extremely compelling about their achievement data
was the fact that the direction of the difference was the same for all 10 measures.
Specifically, for all 10 measures, the one-wife children outperformed the two-wife
children. Thus, they applied the third step of the Three-Step model proposed above,
and conducted a Binomial Test for Result Direction, which yielded a p-value of ..001.
Thus, although the researchers were not able to state that one-wife children obtained
.statistically significantly, higher scores on any of the achievement variables, they were
able to conclude the following:

In the present study, the direction of the difference was the same for all 10
achievement measures. Specifically, for all 10 indicators, one-wife children
outperformed the two-wife children. This result is extremely compelling because
under the null hypothesis that the one- and two-wife children were equivalent
across all levels of academic performance, the probability of all 10 outcomes
being in favor of one-wife children was .001. Thus, the Binomial Test of Result
Direction revealed that the consistency with which children from one-wife families
outperformed those from two-wife families was statistically significant (p < .001).
The magnitude pertaining to this trend, as measured by the difference between
the observed proportion and the proportion expected by chance, was 1.00 - 0.50
= 0.50 (Onwuegbuzie, 2001). This magnitude can be expressed as a proportion-
observed-above-chance effect size measure of 100(1.00 .05)/0.50 = 100%,
which is the maximum value for this Binomial effect size index. (p. 25)

Summary and Conclusions
Much debate still prevails regarding the use of statistical significance tests in

empirical studies. Whereas some researchers believe that statistical significance testing
should be banned completely (e.g., Bakan, 1966; Cahan, 2000; Carver, 1978, 1993;
Cohen, 1994, 1997; Guttman, 1985; Loftus, 1996; Meehl, 1967, 1978; Nix & Barnette,
1998; Rozeboom, 1960; Schmidt, 1992; 1996; Schmidt & Hunter, 1997), others contend
that statistical significance tests should play a role in statistical analyses (Abelson,
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1997a, 1997b; Frick, 1996; Levin, 1993, 1998; McLean & Ernest, 1998; Mulaik, Raju, &
Harshman, 1997; Onwuegbuzie & Daniel, in press-a, in press-b). The former group tend
to argue that effect sizes should replace p-values completely. However, in the current
paper, 10 flaws associated with effect-size reporting were described in detail, thereby
refuting this contention.

Researchers who believe that statistical significance tests should remain tend to
to advocate that p-values and effect sizes complement one another. However, among
this group, debate exists as to how these indices should be combined, ranging from
those who maintain that effect sizes always should be reported (e.g., Thompson, 1996),
to those who believe that effect sizes only should be reported if the observed finding is
statistically significant (e.g., Robinson & Levin, 1997). The concepts of Type A error
(i.e., over-interpreting large effect sizes in the presence of statistically non-significant
findings) and Type B error (over-interpreting a small effect size in the presence of a
statistically significant finding) were introduced to refute the use of p-values and effect
sizes in isolation. Rather, Robinson and Levin's (1997) Two-Step procedure was
advanced, whereby researchers first objectively evaluate the probability of an observed
effect (i.e., statistical significance) and, if and only if it can be concluded that the
underlying finding is too improbable to be due to chance, then its magnitude or effect
size (i.e., practical significance) is assessed. It was contended that this technique is
extremely useful when conducting null hypothesis significance tests that have sufficient
statistical power.

Unfortunately, evidence was provided that the Two-Step method was inadequate
at best, and misleading at worst, when multiple tests of univariate hypotheses are of
interest due, to the reduction in statistical power stemming from adjustments for Type I
error that are needed. In such cases, a Three-Step Method was proposed to replace
the Two-Step model. This three-step method involves a Binomial Test of Result
Direction at its third stage. A heuristic example was provided to illustrate the utility of
this approach.

The Binomial Test of Direction proposed in this paper has other uses. For
example, it can be used to analyze correlation matrices (e.g., as part of a multi-trait
multimethod analysis) to determine how many relationships among instrument
subscales are in a statistically significantly consistent direction (i.e., all or most in either
the positive or negative direction). Also, it could be used in discriminant analysis,
canonical analysis, and factor analysis to determine either whether the loadings are in a
statistically significantly consistent direction, or to test whether the proportion of
loadings that are practically significant (e.g., greater than .3 or .5) are above what could
be expected by chance. Further, this test could be used in structural equation modeling
to determine whether the proportion of significant paths are above what could be
expected by chance.

Finally, the binomial test perhaps could be used in meta-analyses to determine
whether the number of effects across studies that are statistically significant is above
what could be expected by chance or whether the number of effect sizes above an a
priori effect size across the selected studies represents chance. As such, it is hoped
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that the Binomial Test of Result Direction in particular and the Three-Step Model in
general that have been proposed here are subjected to scientific scrutiny, but one that
is as balanced as it is rigorous.
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Table 1

Possible Outcomes and Conclusion Validity When Null Hypothesis Significance Testing
and Effect Sizes are Combined

p-value

Not statistically significant

Statistically significant

Effect Size

Large Small

Type A error Conclusion Validity

Conclusion Validity Type B error
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Table 2

Number of Successes Needed to Obtain a Statistically Significant Trend (i.e., Critical
Value) Using the Binomial Test of Result Direction

Number of Null
Hypotheses Tested Critical Value' p-value2

5 5 .0310
6 6 .0160
7 7 .0080
8 7 .0350
9 8 .0200

10 9 .0110
11 9 .0327
12 10 .0193
13 10 .0461
14 11 .0287
15 12 .0180
16 12 .0384
17 13 .0245
18 13 .0481
19 14 .0318
20 15 .0210
21 15 .0392
22 16 .0262
23 16 .0466
24 17 .0320
25 18 .0216

'The critical value represents the number of successes (i.e., observed findings in the
same direction) needed to obtain a p-value less than .05 using the Binomial Test of
Result Direction.

2 The p-value represents the probability of obtaining a number of successes as extreme
or more extreme than the critical value
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Figure 1. Three-step method for testing multiple univariate null hypotheses.
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